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Abstract

A biphasic effect of morphine on locomotion has been extensively described. Nevertheless, the effects of this opioid on other behavioral

parameters have been overlooked. The aim of the present study was to verify the effects of different doses of morphine on motor behaviors

observed in an open-field. Adult female mice were injected with saline or morphine (10, 15 and 20mg/kg, i.p.) and observed in an open-field for

quantification of locomotor and rearing frequencies as well as duration of immobility and grooming. The lowest dose of morphine decreased

locomotion (and increased immobility duration) while the highest dose increased it. All doses tested decreased rearing and grooming. Thus, the

effects of morphine on locomotion do not parallel to its effects on rearing and grooming. Our results indicate that locomotion not always reflects

the effect of drugs on motor activity, which can be better investigated when other behavioral parameters are concomitantly taken into account.

D 2005 Published by Elsevier Inc.
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1. Introduction

Several studies have focused on the locomotor effects of

morphine. In this respect, a stimulant as well as a depressive

locomotor effect of this opioid has been reported depending

on the dose and the interval after administration (Herman et

al., 1979; Székely et al., 1980; Longoni et al., 1987; Narita

et al., 1993; Funada et al., 1994; Belknap et al., 1998;

Dogrul et al., 1999; Manzanedo et al., 1999; Rodrigues-

Arias et al., 2000).

While mesolimbic dopaminergic system has been related

to the hyperlocomotion induced by several psychostimu-

lants (Kelly et al., 1975; Kelly and Iversen, 1976; Swerdlow

and Koob, 1985; Vaccarino et al., 1986), the participation of

this pathway in opioid-induced hyperlocomotion has been

ruled out (Kalivas et al., 1983; Amalric and Koob, 1985;

Vaccarino et al., 1986; Murphy et al., 2001). Thus, the

effects of morphine on locomotor behavior seems to be

complex from a neurochemical point of view. From a

behavioral perspective, locomotion can be modified by the
0091-3057/$ - see front matter D 2005 Published by Elsevier Inc.

doi:10.1016/j.pbb.2005.07.004

* Corresponding author. Tel./fax: +55 11 5549 4122.

E-mail address: vanabilio@uol.com.br (V.C. Abı́lio).
concomitant expression of other motor behaviors (Bernardi

et al., 1986; Chinen et al., in press). Nevertheless, the effects

of morphine on motor behaviors other than locomotion have

received much less attention. Within this context, the

concomitant analysis of several motor behaviors would be

enriching and could provide more accurate information

about the motor function alterations following morphine

administration. In this way, the open-field paradigm has

been extensively used to study motor as well as exploratory

behaviors (Frussa-Filho and Palermo-Neto, 1988, 1991;

Silva et al., 1996; Abı́lio et al., 1999, 2003; Prut and

Belzung, 2003; Araujo et al., 2004; Frussa-Filho et al.,

2004). The aim of the present work was to investigate the

effects of different doses of morphine on several motor

behaviors observed simultaneously in an open-field.
2. Material and methods

2.1. Subjects

Healthy adult (3 months of age) female EPM-1 mice,

born and raised under our laboratory conditions, were
ehavior 81 (2005) 923 – 927
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Fig. 2. Effects of morphine administration on open-field rearing behavior of

mice. Data are expressed as mean TS.E.M. Analysis of variance followed

by Duncan’s test. *P <0.05 when compared to saline-treated group.
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used. Female mice were used on the basis of the greater

locomotor stimulation induced by morphine in this gender

(Holtman et al., 2004). The animals were housed under

conditions of controlled temperature (22–23 -C) and under

a 12 h light/dark cycle with lights on at 7:00 am. Food and

water were available ad libitum throughout the experiment.

Animals used in this study were maintained in accordance

with the guidelines of the Committee on Care and Use of

Laboratory Animal Resources, National Research Council,

USA.

2.2. Drugs

Morphine sulfate (Sigma Chemical Co., St. Louis, MO)

was diluted in saline. Saline was used as vehicle. Morphine

and its vehicle were administered intraperitoneally in a

volume of 10 ml/kg body weight.

2.3. Procedure

Animals were injected with saline or 10, 15 or 20 mg/

kg morphine (n =10). Thirty minutes later, mice were

placed individually in the center of an open field arena —

a circular box (40 cm in diameter and 50 cm high) with an

open-top and a floor divided into 19 squares. Locomotion

(number of floor units entered) and rearing (number of

times the animal stood on hind legs) frequencies as well as

immobility duration (total seconds of lack of movements)

and grooming (total seconds of mouth or paws on the body

and on the head) duration were simultaneously measured

during 5 min.

2.4. Statistical analysis

Data were analyzed by one-way analysis of variance

(ANOVA) followed by Duncan’s test. To verify a possible

correlation among open-field behaviors, Pearson’s correla-

tion test was applied. A probability of p <0.05 was
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Fig. 1. Effects of morphine administration on open-field locomotor

behavior of mice. Data are expressed as mean TS.E.M. Analysis of variance

followed by Duncan’s test. *P <0.05 when compared to all the other

groups.
considered to show significant differences for all compar-

isons made.
3. Results

The lowest dose of morphine decreased locomotion

frequency while the highest dose increased it (Fig. 1). Thus,

mice treated with 10 and 20 mg/kg morphine presented a

decrease and an increase in locomotion, respectively, when

compared to saline-treated animals [F (3,36)=11.52,

p <0.0001]. Mice treated with 15 mg/kg morphine did not

present any difference in locomotion when compared to

saline-treated animals, but presented an increase and a

decrease in locomotion when compared to 10 and 20 mg/kg

morphine-treated mice, respectively.

All doses of morphine decreased rearing (Fig. 2). Thus,

mice treated with 10, 15 or 20 mg/kg morphine presented a

decrease in rearing frequency when compared to saline-

treated animals [F (3,36)=7.31, p<0.001]. There were no

differences among morphine-treated groups.

Morphine at the dose of 10 mg/kg increased immobility

(Fig. 3). Thus, 10 mg/kg morphine-treated mice presented

an increase in duration of immobility when compared to all

the other groups [F (3,36)=5.14, p <0.005]. Mice treated

with 15 or 20 mg/kg morphine did not present any
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Fig. 3. Effects of morphine administration on open-field duration of

immobility of mice. Data are expressed as mean T S.E.M. Analysis of

variance followed by Duncan’s test. *P <0.05 when compared to all the

other groups.
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Fig. 4. Effects of morphine administration on open-field grooming behavior

of mice. Data are expressed as mean TS.E.M. Analysis of variance followed

by Duncan’s test. *P <0.05 when compared to saline-treated group.
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difference in duration of immobility when compared to

saline-treated animals, but presented a decrease in duration

of immobility when compared to 10 mg/kg morphine-

treated mice.

All doses of morphine decreased grooming (Fig. 4).

Thus, mice treated with 10, 15 or 20 mg/kg morphine

presented a decrease in grooming duration when compared

to saline-treated animals [F (3,36)=14.59, p <0.0001].

There were no differences among morphine-treated groups.

Pearson’s correlation test revealed a positive correlation

between rearing and grooming behaviors as well as a

negative correlation between duration of immobility and

locomotion and duration of immobility and rearing behavior

(Table 1).
4. Discussion

Our results show that the lowest dose of morphine

decreased locomotion (and increased duration of immobil-

ity) while the highest dose increased it. In addition, rearing

frequency as well as grooming duration were decreased by

all doses of morphine.

As commented earlier, morphine effects on locomotor

activity depend on the dose used. Thus, in mice a range of

doses from 3 to 10 mg/kg elicited an initial depression

followed by hyperlocomotion (Székely et al., 1980). On the

other hand, other authors have found only hyperlocomotion

with doses between 10 and 40 mg/kg (Herman et al., 1979;

Longoni et al., 1987; Narita et al., 1993; Funada et al., 1994;

Dogrul et al., 1999; Manzanedo et al., 1999). In addition,

Rodriguez-Arias et al. (2000) describe an increase in the

locomotion frequency of mice treated with 25 and 50 mg/kg
Table 1

Correlation coefficients (Pearson’s test) among the open-field behaviors

Locomotion Rearing

Locomotion 0.1947 p =0.2

Rearing 0.1947 p =0.229

Grooming �0.1317 p =0.418 0.4017 p =0.0

Immobility �0.6442 p =0.000 �0.39999 p =0.
but no changes with lower doses. Finally, using 15 different

mouse strains, Belknap et al. (1998) describe a depressive

and a stimulant effect of respectively lower and higher doses

of morphine (4 – 32 mg/kg) in the majority of them. In this

respect, our data also show a biphasic effect of morphine on

the locomotor behavior of mice with a depressor effect with

10 mg/kg and a stimulant effects with 20 mg/kg.

One could hypothesize that the locomotor effects of

morphine would influence the manifestation of other motor

behaviors due to behavioral competition. This does not

seem to be the case since all doses of morphine decreased

rearing frequency and duration of grooming. In addition, no

correlation was observed between locomotion and rearing or

grooming behaviors. Reinforcing the absence of behavioral

competition, a much lower dose of morphine (0.5 mg/kg)

increased both locomotion and rearing observed in rats

(Lecca et al., 2004). The present results indicate that

morphine differentially alters the neuroanatomical substrates

specifically related to these behaviors.

Regarding the effects of morphine on locomotion, an

injection of this drug either in the ventral tegmental area or

in the nucleus accumbens produces, depending on the dose

used, hyperlocomotion or an initial inhibition of activity

followed by desinhibition (Cunningham and Kelly, 1992;

Bauco et al., 1993). In addition, morphine at the same doses

that induce hyperlocomotion also induces an increase in the

release of mesolimbic dopamine (Di Chiara and Imperato,

1988a,b; Di Chiara, 1995; Pontieri et al., 1995; Bassareo et

al., 1996). On the other hand, mesolimbic dopaminergic

pathway does not seem essential to the hyperlocomotion

induced by opiates. Indeed, pharmacological blockade of

dopamine receptors or 6-hydroxy-dopamine destruction of

dopamine terminals within the nucleus accumbens does not

inhibit the locomotor activating property of systemically

administered heroin (Vaccarino et al., 1986). In addition,

heroin-stimulated locomotion is antagonized by blockade of

opioid receptors within the nucleus accumbens (Amalric and

Koob, 1985). Finally, the administration of an enkephalin

analog into the nucleus accumbens induces locomotor

activation, which is not attenuated by destruction of the

mesolimbic dopamine system (Kalivas et al., 1983). It is

important to note that the above-mentioned evidences were

obtained in rats and caution should be taken when

considering these evidences to discuss our behavioral data

obtained in mice. However, a dopamine-independent

mechanism related to morphine-induced hyperlocomotion

has been also demonstrated in mice. Indeed, Murphy et al.

(2001) have showed that there are no correlations between
Grooming Immobility

29 �0.1317 p =0.418 �0.6442 p =0000

0.4017 p =0.010 �0.3999 p =0.011
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morphine-induced locomotion and mesolimbic dopamine

release in several strains of mice.

Considering rearing frequency, a decrease was induced

by all the doses of morphine used. In this respect, although

there are data showing that opioid peptides cause increases

in rearing frequencies (Meyer et al., 1995; Bujdosó et al.,

2001a,b) and the opioid antagonist naltrexone can reduce

rearing activity (Rotta et al., 1988; Rocha and de Mello,

1994; Balcells-Olivero and Vezina, 1997), our results are in

accordance with the study of Kuzmin et al. (2000) which

demonstrated that 20 mg/kg morphine produced a decrease

in rearing frequency of mice, concomitantly to a tendency

towards an increase in locomotion frequency. In the same

way, 30 mg/kg morphine produced an increase in locomo-

tion and a decrease in rearing frequency (Laviola et al.,

1994). In addition, increased rearing is one of the typical

withdrawal symptoms after cessation of chronic adminis-

tration of opiates (Hoshi et al., 2000; Nakagawa et al., 2000;

Rockhold et al., 2000; Samini et al., 2000; Tokuyama et al.,

2000; Tsuji et al., 2000). It should be considered that

different pharmacological profiles of the drugs used in these

studies could explain the different results described.

Similarly to rearing results, grooming behavior was also

decreased by all the doses of morphine, and a positive

correlation between rearing and grooming behaviors was

observed. In this respect, Laviola et al. (1994) describe a

decrease in grooming concomitant to an increase in

locomotion in mice treated with 30 mg/kg morphine. It is

interesting to note that rearing behavior is related to

exploratory activity (Rotta et al., 1988; Crusio, 2001) and

grooming behavior can be modified as a consequence of

stress (Ducottet and Belzung, 2004). In this way, morphine

presents aversive properties and produces controversial

effects on anxiety levels (Anseloni et al., 1999; Patti et

al., submitted). Thus, one should consider that the effects of

morphine on emotional aspects could account for the

different results found for locomotion, rearing and grooming

behaviors.

In conclusion, our data show that morphine differentially

modifies motor behaviors: the well-documented biphasic

effect of morphine seems to be specifically for locomotor

activity. Interestingly, concerning motor activity as a whole

an inhibitory effect was verified since the duration of

immobility was increased by the lowest dose (10 mg/kg) of

morphine only. In this respect, duration of immobility

negatively correlated to locomotion as well as to rearing

frequencies. These results indicate that locomotion not

always reflects the effect of drugs on motor activity, which

can be better investigated when other behavioral parameters

are concomitantly taken into account.
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